15 research outputs found

    O papel de características funcionais e competição por luz na variação intraannual do diâmetro de oito espécies arbóreas sob efeito de fragmentação na Amazônia Central

    Get PDF
    There are microclimatic variations in continuous and fragmented mature forests, modulated by climatic seasonality. However, we do not know how species that persist in fragmented habitats differ in functional strategy and growth. The slow annual growth of some tropical tree species may be due to stagnation and seasonal shrinkage of the stem, but the literature is not consistent about which intrinsic and extrinsic factors are linked to shrinkage. We investigated the variation in diameter of 146 individuals of eight abundant tree species in mature forest and remnants of forest fragments isolated for almost 40 years in the Brazilian Central Amazon. The availability of light, variations in precipitation, soil water volume and temperature, as well as several tree functional traits, were evaluated as predictors of diametric increase and shrinkage. We used paired t-tests to evaluate whether the absolute (GR) and relative (RGR) annual growth rate, annual and seasonal (bimonthly dendrometric bands data), of 146 individuals varies according to climatic seasonality along two years, and if there is evidence of acclimatization in the functional traits of the individuals in the two habitats (continuous forest and forest fragment). We also tested which variables are best predictors of diametric increase and shrinkage. There was greater annual GR of trees in the continuous forest, due to the larger average size of the trees in this habitat, but no differences in annual RGR. Seasonal RGR was higher in the rainier periods, with no differences among habitats, except in the rainiest period of 2018, where values were higher in individuals from the continuous forest. Individuals in the forest fragments had SAP almost 20% and SLA more than 25% larger in relation to individuals in the continuous forest. Some functional traits and climatic variables had different relationships between habitats and were the most important factors in explaining the variation of tree diameter increase and shrinkage. The availability of light had no relation with increase and shrinkage.A fragmentação pode alterar a estrutura e funcionalidade de florestas tropicais, mas não sabemos como espécies arbóreas que persistem nos habitats fragmentados diferem no crescimento e na estratégia funcional de coespecíficas em florestas contínuas. Aqui investigamos se há diferenças no crescimento, na estratégia funcional e na variação diâmétrica de espécies arbóreas coespecíficas em floresta contínua madura e em fragmentos florestais na Amazônia central. Para isso, selecionamos 146 indivíduos de oito espécies arbóreas abundantes em floresta contínua madura e remanescentes em fragmentos florestais, que se distribuem ao longo do espectro de economia da madeira e ocupam desde o sub-bosque até o dossel superior da floresta. Usamos testes t pareados para investigar se os habitats selecionam diferenças nas taxas de crescimento diamétrico sazonais e anuais e na estratégia funcional. A identidade das árvores, determinadas características funcionais, variações na precipitação, volume de água no solo, na temperatura do ar e na disponibilidade de luz foram testadas como preditores de incrementos e encolhimentos diamétricos. Árvores nos fragmentos florestais tiveram menores taxas de crescimento absoluto anual, moldada pelo menor tamanho médio das árvores neste habitat. Quando tiramos o efeito do tamanho, mostramos que não há diferenças nas taxas de crescimento relativo anual e sazonal entre habitats, exceto no período mais chuvoso de 2018, onde os indivíduos da floresta contínua cresceram mais. Apesar de não haver diferença de crescimento entre os habitats, os indivíduos nos fragmentos florestais tiveram proporção de xilema ativo (em relação a área basal) quase 20 % e área foliar específica mais de 25 % maiores em relação aos indivíduos na floresta contínua. A identidade das árvores explicou a maior parte dos incrementos diamétricos, enquanto algumas características funcionais e variáveis climáticas foram os fatores mais importantes na explicação dos encolhimentos no diâmetro das árvores. Esse é um dos primeiros estudos que inferem sobre a resiliência das árvores que persistem frente às mudanças ambientais causadas pela fragmentação. Mostramos que mesmo tendo variação nas estratégias funcionais e ocupando diferentes estratos verticais no dossel, algumas espécies arbóreas podem manter o ritmo de crescimento após a fragmentação através da aclimatação das características funcionais em direção à aquisição de recursos

    A BAX/BAK and Cyclophilin D-Independent Intrinsic Apoptosis Pathway

    Get PDF
    Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-XL overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria

    Physical properties of the trans-Neptunian binary 2000 YW₁₃₄

    Get PDF
    The study of trans-Neptunian binaries (TNBs) remains one of the most active areas of progress in understanding the solar system beyond Neptune. TNBs have been found in every dynamical population of the trans-Neptunian region (Noll et al. 2020), with proportions ranging from 29 % in the cold classical population to 5.5 % for the remaining classes combined (Brunini 2020). The formation of the contact TNB Arrokoth is one of the challenges that formation models face nowadays. The current angular momentum of Arrokoth is too low and the current binary formation scenarios, by either rotational fission or streaming instability (Nesvorný et al. 2019), require also loss of angular momentum (McKinnon et al. 2020). Additionally, formation mechanisms of close binaries may be distinct from those for the wider pairs. As the angular momentum of a system approaches that of an object spinning near its critical rotation period, rotational fission is the most likely explanation for their formation (Descamps et al. 2008), which is thought to be the case for the proposed satellites of Varuna and 2002 TC302 systems (Fernández-Valenzuela et al. 2019; Ortiz et al. 2020). If close TNBs turn out to be common for objects rotating close to the breakup limit, that could reveal important clues about angular momentum evolution during accretion for TNOs (Petit et al. 2011). However, characterizing binary systems at such distances is challenging. From the ~120 known TNBs, only around 40 have their mutual orbit fully determined, let alone physical characterization. 2000 YW134 is a TNB in a 3:8 resonance with an orbital semi-major axis of 57.4 au (a rare occurrence). On February 23rd, 2022, it occulted the Gaia EDR3 star 627356458358636544 (V = 17.1 mag). The stellar occultation was initially predicted using the JPL orbit solution #24, and updated using data from the 1.5-m and 1.23-m telescopes at Sierra Nevada and Calar Alto Observatories, using the same methodology as explained in Ortiz et al (2020). From the 17 observatories involved, seven reported positive chords, with five of them corresponding to the main body and the other two chords corresponding to its satellite. We are currently working on the analysis of these data in order to obtain the physical properties that characterize the system. Preliminary results show that the lower limit for the equivalent projected diameter of the satellite is twice the previously estimated size from HST observations (Stephens et al. 2006). We will also compare our results with the area-equivalent diameter and albedo obtained using thermal data from Herschel and Spitzer observations (Farkas-Takács et al. 2020)

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Physical properties of the cubewano 19521 Chaos from a multi-chord stellar occultation

    Full text link
    Trans-Neptunian Objects (TNOs) have had an increasing interest since the discovery of (15760) Albion in 1992. These objects are considered remnants of the Solar System formation, and can thus provide clues about its origin and evolution. One of the best techniques to study TNOs from ground-based telescopes are stellar occultations which, if combined with photometric data, permit to obtain physical properties of the TNO such as its size, shape, and albedo. With this in mind, we predicted, observed, and analyzed the stellar occultation of the Gaia source 3444789965847631104 caused by the cubewano (19521) Chaos on the 20th of November 2020. The prediction was part of the searching program carried out by the Lucky Star project collaboration. We observed the object with the 1.23-m telescope at Calar Alto Observatory (Almería, Spain) two days before the event to update the prediction. The occultation observing campaign involved 19 observing stations, both professional and amateur, and resulted in three positive detections and 11 negative detections. Five teams could not observe due to bad weather. We fitted the positive chords' extremities to an ellipse to derive Chaos' projected size and shape and determine its geometric albedo. The preliminary area-equivalent diameter obtained is slightly smaller than the one derived with Herschel thermal data. However, we are still analyzing photometric data to complement and improve these results
    corecore